Step of Proof: fun_thru_ite
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
fun
thru
ite
:
S
,
T
:Type,
f
:(
S
T
),
b
:
,
p
,
q
:
S
.
f
(if
b
then
p
else
q
fi ) = if
b
then
f
(
p
) else
f
(
q
) fi
latex
by ((((((RepD)
CollapseTHENM (OnVar `b' BoolCases))
)
CollapseTHENM (AbReduce 0))
)
Co
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
C
) inil_term)))
latex
C
.
Definitions
ff
,
tt
,
t
T
,
if
b
then
t
else
f
fi
,
x
:
A
.
B
(
x
)
,
Unit
,
,
Lemmas
bool
wf
origin